Teaching tomorrow’s Data Scientists

BICARD gives you the tools, techniques, and fundamental concepts needed to make an impact as a data scientist. In just 12 weeks, you’ll apply problem-solving and creative thinking to real-world data sets, gaining experience across the data science stack: data munging, exploration, modeling, validation, visualization, and communication.



Grounded in Python, our program covers the necessary tools and concepts used by data scientists in industry, including machine learning, statistical inference, and working with data at scale. As you learn more advanced techniques, you’ll use tools like SQL and NoSQL. When you graduate, you’ll have a solid grasp of machine learning, statistics, and will have built numerous data science applications.




Week 1 – Exploratory Data Analysis and Software Engineering Best Practices

Week 2 – Statistical Inference, Bayesian Methods, A/B Testing, Multi-Armed Bandit

Week 3 – Regression, Regularization, Gradient Descent

Week 4 – Supervised Machine Learning: Classification, Validation, Ensemble Methods

Week 5 – Clustering, Topic Modeling (NMF, LDA), NLP

Week 6 – Network Analysis, Matrix Factorization, and Time Series

Week 7 – Hadoop, Hive, and MapReduce

Week 8 – Data Visualization with D3.js, Data Products, and Fraud Detection Case Study

Weeks 9-10 – Capstone Projects

Week 12 – Interview Preparation



Admissions/ pre-requisite

We’ll give you a take home assignment to assess your quantitative and programming skills, then conduct two technical interviews. The first evaluates your proficiency with programming in Python while the second covers probability, statistics, experiment design, and basic modeling. We look for students who are familiar with data analysis tools and practices and a background in a quantitative disciplines like foundational statistics, probability, linear algebra, or mathematics.